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1. Introduction

Mutations are the ultimate source of genetic diversity within and across species, and the main               
drivers of evolution and disease. Mutations occur due to a combination of errors in DNA               
replication or damage that is unrepaired. Understanding the rate and mechanisms by which they              
occur is of great importance for studies of medical genetics and evolutionary biology. Recent              
advances in sequencing have now made it possible to generate large datasets to study mutational               
processes across individuals and diseases. 

A chief application of mutation studies is in deciphering somatically acquired changes in the DNA               
of cancer cells. In addition to the mutations that confer a growth advantage, the so-called cancer                
drivers, cancer genomes accumulate a large number of somatic mutations resulting from normal             
DNA damage and repair processes as well as mutations triggered by carcinogenic exposures or              
cancer related aberrations of DNA maintenance machinery. These mutagenic processes often           
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produce characteristic mutational patterns called Mutational Signatures . However, cancer         
mutational signatures can be the consequence of interacting factors, such as carcinogenic            
exposures and potential deficiencies of the DNA repair mechanism. Further, mutational process            
activity changes over time, leading to unique patterns of mutations. While cancer biologists have              
known for years that mutational processes such as UV radiation produce characteristic mutations             
(e.g. [1]), the large-scale mining of cancer genomes for signatures of mutational processes has              
only begun recently. 
 
The key drivers of the study of mutational signatures in cancer have been access to data and                 
computational approaches. In the past decade, consortia such as The Cancer Genome Atlas and the               
International Cancer Genome Consortium have produced datasets of millions of somatic mutations            
from more than 35 cancer types. For the first time, these datasets enabled researchers to search for                 
patterns of somatic mutations across thousands of tumors. 
 
Seminal studies of mutational signatures focused on identifying the signatures and characterizing            
their etiology. Nik-Zainal et al. [2] and Alexandrov et al. [3] were the first to model a tumor's                  
mutations as a mixture of hidden mutational signatures. Alexandrov et al. [4] applied such a model                
to a pan-cancer dataset, creating the first survey of mutational signatures in cancer. Recently,              
members of the Pan Cancer Analysis of Whole Genomes (PCAWG) Network have taken another              
large step forward in surveying mutational signatures combining cancer exome sequencing data            
with the whole genome sequencing data from the International Cancer Genome Consortium [5].  
 
More recently, mutational signatures research has expanded to include applications towards           
personalized therapy and methods for understanding tumorigenesis. Researchers have found that           
mutational signatures may serve as prognostic [6] or predictive biomarkers [7]. In the latter case,               
the potential power of modeling mutational signatures comes from being able to identify patients              
with DNA damage/repair deficiencies, even in the absence of known driver mutations.            
Researchers have also begun to develop methods that use insights from mutational signatures to              
identify driver mutations [8-9] -- e.g. by modeling the “mutability” of different genes based on the                
signatures active in a given cancer type -- and better model cancer evolution [10-11] -- e.g. by                 
characterizing the differences in signature activity among subclones.  
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2.  New trends in mutational signatures research 

This session highlights a keynote talk given by Dr. Ludmil Alexandrov, one of the leaders in this                 
new burgeoning area of research. Dr. Alexandrov is a lead author on many of the seminal papers                 
in the field, including the first pan-cancer survey of mutational signatures [4]. Dr. Alexandrov has               
continued to lead studies characterizing the mutational signatures of specific mutagens (e.g.            
tobacco smoke [12]) and one of the first studies exploring the use of mutational signatures for                
personalized therapy [13]. The original research papers accepted to the session span a broad array               
of active mutational signatures research topics. 

2.1. Mutational signatures and cancer evolution 

Two of the accepted papers examine the interplay between mutational processes and cancer             
evolution. Knowing when mutational processes were active is crucial context for fully            
understanding a tumor’s evolutionary history. An understanding of cancer evolution can also            
improve estimates of signature exposures, as cells in a tumor do not share all mutations. Harrigan                
et al. introduce TrackSigFreq for constructing evolutionary “trajectories” of signature exposures,           
which consist of changepoints in exposure ordered by pseudotime. TrackSigFreq improves upon            
the authors’ earlier method, TrackSig [10], by using variant allele frequencies to distinguish             
between subclones with the same signature exposure. Harrigan et al. evaluate TrackSigFreq on             
simulated data, and even with the advantage of distinguishing between subclones with the same              
exposures, they find TrackSigFreq provides at least as accurate trajectory reconstructions           
compared to TrackSig, depending on the simulated scenario. Christensen et al. introduce PhySigs,             
an algorithm for inferring exposures for subtrees for cancer phylogenies given as input. In              
multi-sample sequencing data from lung cancer patients, Christensen et al. find that 22% (20/91)              
of the cancer phylogenies have evidence of exposure “shifts”, and show how understanding             
exposure shifts can improve understanding of driver mutations and be used to distinguish among              
alternative proposed phylogenies for a tumor.  

2.2. Distinguishing signatures of DNA damage and repair 

Cancer mutational signatures can be seen as the end-effect of several interplaying factors: the              
nature of DNA damage including specific properties of the lesion (e.g. DNA break, covalent              
modification, bulky adducts), the properties and distribution of sites that are vulnerable to the              
damage and the properties of repair mechanism responsible for repairing the primary damage             
including potential cancer-related deficiencies of this mechanism. In addition, DNA stress, double            
strand breaks (DSB) or other cancer related changes create mutation opportunities that could lead              
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to unique patterns of DNA primary damage. Thus, there are many factors that jointly contribute to                
the final catalog of patient’s mutation and their contribution is not always additive [14]. However,               
the leading methods for signature discovery, such as NMF, cannot model non-additive effects. In              
order to disambiguate the atomic components that contribute to the final signature, new methods              
are required. As a step in this direction, the paper by Wojtowicz et al. presented in this session                  
introduces a simple yet powerful descriptor of mutational signatures, called DNA Repair Footprint             
(RePrint). They show that it can capture common properties of repair mechanisms contributing to              
diverse signatures. These results demonstrate that large mutational datasets contain information           
that allows us to go beyond uncovering mutational signatures and begin the discovery of              
elementary components of the processes that generated them. 

2.3. The distribution of somatic mutations across genome  

Mutational processes do not act uniformly on the genome, but depend on many factors such as the                 
genome's chromatin structure, epigenetics, and genomics region (e.g. genic versus intergenic,           
promoter, replication time, etc). These biases are typically specific to a mutagenic process [15].              
Thus, similarly as in the case of mutational signatures, the distribution of mutations is a result of                 
the interplay between DNA damage and repair, but also the genomic context. For example              
APOBEC enzyme introduces mutations on single-stranded DNA (ssDNA). During replication, the           
lagging strand is particularly susceptible to APOBEC mutations [16]. Similarly, non-canonical           
DNA structures, like cruciforms expose ss-DNA making corresponding regions prone to APOBEC            
mutagenicity [17]. As another example, mismatch repair acts more efficiently in early-replicating            
areas while the base excision repair pathway has lower efficiency at nucleosomes than linkers.              
This heterogeneity raises the question of whether the distribution of mutations alone is predictive              
of cancer type. Over the past several years, multiple studies have shown that it is [18-19]. The                 
study by Jiao et al. [19] shows that it is possible to use machine learning to classify primary and                   
metastatic cancers based on patterns of passenger mutations. In addition, the non-uniform and             
signature dependent distribution of mutations suggest that the different genomic locations can            
provide different information about the relation of mutations in this region and tumor type. In the                
paper by Young at al. presented in this session, the authors develop an information theory driven,                
dynamic programming algorithm for associating regional mutation density with cancer type. They            
show that their algorithm provides an efficient method for finding a partition of the genome into                
regions with mutation density strongly associated with a phenotype, and can thus be used to               
predict cancer subtypes.  
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2.4. Mutational signatures can reveal sources of cancer drivers 

Mutational signatures help to identify mutational processes acting on the genome. As the research              
outlined above indicates, some regions are more vulnerable to disruption by some mutagenic             
precesses than others. Recent research demonstrates clear links between mutational processes and            
driver mutations [9, 20]. For example, a famous cancer driver, the PIK3C gene, has a mutational                
hotspot consistent with APOBEC activity [20-21], and Fredriksson et al. [22] found that many              
recurrent promoter mutations in melanoma likely occur due to a particular vulnerability to a UV               
radiation mutational process [22]. Given the genome-wide activity of mutational signatures, it is             
also expected that mutagenic processes can also have a signature-specific effect on binding sites              
and microRNA activity. In a paper by Stamoulakatou et al. presented in this session, the authors                
investigate how mutational signatures may disrupt microRNA activity. Mutational processes have           
the potential to alter either microRNA seed regions or their targets, in turn leading to gene                
dysregulation. The authors introduce a probabilistic framework to evaluate the “impact” of a given              
signature on each microRNA and its target sequences, both in general and in a particular tumor.                
To validate their method, the authors ranked microRNAs for different cancers based on their              
predicted impact, showing that top ranking microRNAs tend to be associated with the cancer type               
for which they were predicted. The authors further show a positive correlation between the              
predicted impact on a microRNA and the number of somatic mutations in its response elements. 
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